GNPX 2017 Annual Report

9 In addition to its pro-apoptotic cytotoxicity and tyrosine kinase inhibitory activity, TUSC2 enhances the immune response to cancer. Data from preclinical studies at MD Anderson have shown a therapeutic benefit from the combination of TUSC2 and anti-PD- 1 antibody and a key role for TUSC2 in regulating immune cell subpopulations including cytokines, natural killer, or NK, cells, and T lymphocytes. In addition, TUSC2 has been found to down-regulate PD-L1 receptors on the surface of cancer cells. NK cells, an important part of the innate immune system, have developed several mechanisms to distinguish healthy cells from target cells. These mechanisms allow NK cells to kill cells that are deemed dangerous to the host, including cancer cells. However, one of the consequences of malignant transformation is the ability of the cancer cell to evade the immune system. Cancer cells do so via the up-regulation and interplay of receptors, including checkpoint inhibitors such as PD-1 and PD-L1. As shown in the illustration below, TUSC2 has been found to stimulate the release of interleukin-15, or IL-15, resulting in up- regulation of mature NK cells that circulate and target cancer cells. Modulation by TUSC2 of the Immune Response to Cancer The Genprex Platform and Oncoprex Genprex is developing a novel approach to cancer treatment, based on our immunogene therapy platform, which is designed to deliver any of a number of cancer fighting tumor-suppressor genes, alone or in combination with other cancer therapies, to combat multiple types of cancer. The Genprex platform consists of anti-cancer genes encapsulated in nanovesicles that can be delivered intravenously. Our lead product candidate, Oncoprex, is the TUSC2 gene, as the active anti-cancer agent, encapsulated into nanovesicles made from fat molecules with a positive electrical charge formulated for intravenous administration. In our ongoing Phase II clinical trial Oncoprex is injected intravenously approximately every 21 days for as long as the patient continues to benefit, which is defined as tumor size stabilization or shrinkage. Oncoprex has a multimodal mechanism of action whereby it interrupts cell signaling pathways that cause replication and proliferation of cancer cells, re-establishes pathways for programmed cell death, or apoptosis, in cancer cells, and modulates the immune response against cancer cells. Oncoprex has also been shown to block mechanisms that create drug resistance. Oncoprex is a pan-kinase inhibitor shown to simultaneously inhibit the EGFR and AKT oncogenic kinase pathways in vitro and in vivo . Once the cancer cell takes up the nanovesicle containing TUSC2, it is reprogrammed to die. Resistance to targeted drugs and checkpoint inhibitors develop through activation of alternate bypass pathways. For example, when PD-1 is blocked, the TIM-3 checkpoint is up-regulated. We believe that Oncoprex’ multimodal activity will block emerging bypass pathways, reducing the probability that drug resistance develops. Our cancer gene therapy platform and its delivery system are highly targeted. While the TUSC2 gene induces apoptosis in cancer cells which have low or absent TUSC2 expression, TUSC2 delivered by nanovesicles to normal cells is not toxic. Moreover, the nanovesicles are taken up by tumor cells after Oncoprex treatment at 10 to 25 times the rate at which they are taken up by normal cells, because of selective endocytosis, or enveloping by the cell, of the nanovesicle lipid formulation and the enhanced permeability and retention, or EPR, characteristics of tumor vasculature, without the need for external ligands, or binding molecules. Pre- and posttreatment biopsies following intravenous injection of Oncoprex in a phase 1 clinical trial showed robust TUSC2 protein expression in cancer cells at both primary and metastatic tumor sites.

RkJQdWJsaXNoZXIy NTYwMjI1