GNPX 2017 Annual Report
16 Preclinical Study Showing that the TUSC2-Erlotinib Combination Significantly Inhibits Tumor Cell Viability and Colony Formation in NSCLC Cells Without an Activating EGFR Mutation Previous research has shown that NSCLC in cells that lack the activating EGFR mutations exon 19 deficiency and exon 21 substitution is not halted or inhibited by erlotinib at pharmacologically relevant doses. In one preclinical study, MD Anderson researchers tested a group of EGFR negative NSCLC lines for sensitivity to erlotinib after restoration of TUSC2 expression, both transiently and stably, and found a significant benefit resulting from the combination at micromolar ranges between 1uM and 2.3uM. These concentrations are achievable in patient serum with standard dosing regimens and are pharmacologically relevant. Cell viability was evaluated in 3 TUSC2 Tet-On stable clones that had been treated with doxycycline to induce TUSC2, and combined with erlotinib. As expected, the cells that had not had TUSC2 expression restored were not sensitive to erlotinib alone, and the viability of cells in the A549, H1299, and H175 cancer cell lines was 92%, 90%, and 98%, respectively. Induction of TUSC2 with doxycycline alone showed more cytoxicity than erlotinib alone, resulting in 16%, 22%, and 5% cell death, respectively. However, when cells were exposed to doxycycline and treated with 2.3 μM erlotinib for 48 hours, a growth inhibitory effect was observed for all three cell lines (p<0.05), with the relative survival of the A549, H1299, and H175 cancer cells being reduced by 48%, 42%, and 38%, respectively. Similarly, as shown in the graphs below, colony formation was significantly inhibited in cells transiently transfected with TUSC2 and treated with erlotinib. The ability of A549, H1299, H322, and H460 cells to form colonies was reduced by 90%, 80%, 93%, and 85%, respectively. In dose titration experiments erlotinib also mediated increased inhibition of colony formation at nanomolar concentrations. Taken together, the results clearly demonstrate the superiority of the TUSC2-erlotinib combination treatment over each agent alone, and indicate that the effect is independent of the technique of exogenous gene expression. For both viability and colony formation assays the probability of a cooperative effect was greater than 0.99, on a scale from 0 to 1. Zero means no probability of a true cooperative effect, and one means 100% probability of a cooperative effect given the observed data.
Made with FlippingBook
RkJQdWJsaXNoZXIy NTYwMjI1